MACS3.Signal.PeakModel module

Module Description: Build shifting model

This code is free software; you can redistribute it and/or modify it under the terms of the BSD License (see the file LICENSE included with the distribution).

exception MACS3.Signal.PeakModel.NotEnoughPairsException(value)

Bases: Exception

class MACS3.Signal.PeakModel.PeakModel(opt, treatment, max_pairnum=500)

Bases: object

Peak Model class.

alternative_d = None
build()

Build the model. Main function of PeakModel class.

1. prepare self.d, self.scan_window, self.plus_line, self.minus_line and self.shifted_line.

  1. find paired + and - strand peaks

  2. find the best d using x-correlation

bw: typedef
d = None
d_min: typedef
debug: object
error: object
gz: typedef
info: object
lmfold: typedef
max_pairnum: typedef
max_tags: typedef
min_tags = None
minus_line = None
peaksize: typedef
plus_line = None
scan_window = None
shifted_line = None
summary: str
tag_expansion_size: typedef
treatment: object
umfold: typedef
warn: object
xcorr = None
ycorr = None
MACS3.Signal.PeakModel.bool(*args, **kwargs)
MACS3.Signal.PeakModel.smooth(x, window_len=11, window='hanning')

smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the beginning and end part of the output signal.

input:

x: the input signal window_len: the dimension of the smoothing window; should be

an odd integer

window: the type of window from ‘flat’, ‘hanning’, ‘hamming’,

‘bartlett’, ‘blackman’ flat window will produce a moving average smoothing.

output:

the smoothed signal

example:

t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter

TODO: the window parameter could be the window itself if an array

instead of a string

NOTE: length(output) != length(input), to correct this: return

y[(window_len/2-1):-(window_len/2)] instead of just y.